Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Monitoring the regulation of gene expression in a growing organ using a fluid mechanics formalism.

Identifieur interne : 003189 ( Main/Exploration ); précédent : 003188; suivant : 003190

Monitoring the regulation of gene expression in a growing organ using a fluid mechanics formalism.

Auteurs : Rémy Merret [France] ; Bruno Moulia ; Irène Hummel ; David Cohen ; Erwin Dreyer ; Marie-Béatrice Bogeat-Triboulot

Source :

RBID : pubmed:20202192

Descripteurs français

English descriptors

Abstract

BACKGROUND

Technological advances have enabled the accurate quantification of gene expression, even within single cell types. While transcriptome analyses are routinely performed, most experimental designs only provide snapshots of gene expression. Molecular mechanisms underlying cell fate or positional signalling have been revealed through these discontinuous datasets. However, in developing multicellular structures, temporal and spatial cues, known to directly influence transcriptional networks, get entangled as the cells are displaced and expand. Access to an unbiased view of the spatiotemporal regulation of gene expression occurring during development requires a specific framework that properly quantifies the rate of change of a property in a moving and expanding element, such as a cell or an organ segment.

RESULTS

We show how the rate of change in gene expression can be quantified by combining kinematics and real-time polymerase chain reaction data in a mechanistic model which considers any organ as a continuum. This framework was applied in order to assess the developmental regulation of the two reference genes Actin11 and Elongation Factor 1-beta in the apex of poplar root. The growth field was determined by time-lapse photography and transcript density was obtained at high spatial resolution. The net accumulation rates of the transcripts of the two genes were found to display highly contrasted developmental profiles. Actin11 showed pulses of up and down regulation in the accelerating and decelerating parts of the growth zone while the dynamic of EF1beta were much slower. This framework provides key information about gene regulation in a developing organ, such as the location, the duration and the intensity of gene induction/repression.

CONCLUSIONS

We demonstrated that gene expression patterns can be monitored using the continuity equation without using mutants or reporter constructions. Given the rise of imaging technologies, this framework in our view opens a new way to dissect the molecular basis of growth regulation, even in non-model species or complex structures.


DOI: 10.1186/1741-7007-8-18
PubMed: 20202192
PubMed Central: PMC2845557


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Monitoring the regulation of gene expression in a growing organ using a fluid mechanics formalism.</title>
<author>
<name sortKey="Merret, Remy" sort="Merret, Remy" uniqKey="Merret R" first="Rémy" last="Merret">Rémy Merret</name>
<affiliation wicri:level="4">
<nlm:affiliation>INRA, Nancy Université, UMR1137 Ecologie et Ecophysiologie Forestières, IFR 110 EFABA, F-54280 Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, Nancy Université, UMR1137 Ecologie et Ecophysiologie Forestières, IFR 110 EFABA, F-54280 Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Nancy-Université</orgName>
</affiliation>
</author>
<author>
<name sortKey="Moulia, Bruno" sort="Moulia, Bruno" uniqKey="Moulia B" first="Bruno" last="Moulia">Bruno Moulia</name>
</author>
<author>
<name sortKey="Hummel, Irene" sort="Hummel, Irene" uniqKey="Hummel I" first="Irène" last="Hummel">Irène Hummel</name>
</author>
<author>
<name sortKey="Cohen, David" sort="Cohen, David" uniqKey="Cohen D" first="David" last="Cohen">David Cohen</name>
</author>
<author>
<name sortKey="Dreyer, Erwin" sort="Dreyer, Erwin" uniqKey="Dreyer E" first="Erwin" last="Dreyer">Erwin Dreyer</name>
</author>
<author>
<name sortKey="Bogeat Triboulot, Marie Beatrice" sort="Bogeat Triboulot, Marie Beatrice" uniqKey="Bogeat Triboulot M" first="Marie-Béatrice" last="Bogeat-Triboulot">Marie-Béatrice Bogeat-Triboulot</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20202192</idno>
<idno type="pmid">20202192</idno>
<idno type="doi">10.1186/1741-7007-8-18</idno>
<idno type="pmc">PMC2845557</idno>
<idno type="wicri:Area/Main/Corpus">003276</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003276</idno>
<idno type="wicri:Area/Main/Curation">003276</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003276</idno>
<idno type="wicri:Area/Main/Exploration">003276</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Monitoring the regulation of gene expression in a growing organ using a fluid mechanics formalism.</title>
<author>
<name sortKey="Merret, Remy" sort="Merret, Remy" uniqKey="Merret R" first="Rémy" last="Merret">Rémy Merret</name>
<affiliation wicri:level="4">
<nlm:affiliation>INRA, Nancy Université, UMR1137 Ecologie et Ecophysiologie Forestières, IFR 110 EFABA, F-54280 Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, Nancy Université, UMR1137 Ecologie et Ecophysiologie Forestières, IFR 110 EFABA, F-54280 Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
<orgName type="university">Nancy-Université</orgName>
</affiliation>
</author>
<author>
<name sortKey="Moulia, Bruno" sort="Moulia, Bruno" uniqKey="Moulia B" first="Bruno" last="Moulia">Bruno Moulia</name>
</author>
<author>
<name sortKey="Hummel, Irene" sort="Hummel, Irene" uniqKey="Hummel I" first="Irène" last="Hummel">Irène Hummel</name>
</author>
<author>
<name sortKey="Cohen, David" sort="Cohen, David" uniqKey="Cohen D" first="David" last="Cohen">David Cohen</name>
</author>
<author>
<name sortKey="Dreyer, Erwin" sort="Dreyer, Erwin" uniqKey="Dreyer E" first="Erwin" last="Dreyer">Erwin Dreyer</name>
</author>
<author>
<name sortKey="Bogeat Triboulot, Marie Beatrice" sort="Bogeat Triboulot, Marie Beatrice" uniqKey="Bogeat Triboulot M" first="Marie-Béatrice" last="Bogeat-Triboulot">Marie-Béatrice Bogeat-Triboulot</name>
</author>
</analytic>
<series>
<title level="j">BMC biology</title>
<idno type="eISSN">1741-7007</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Regulation, Developmental (genetics)</term>
<term>Gene Expression Regulation, Plant (genetics)</term>
<term>Models, Theoretical (MeSH)</term>
<term>Peptide Elongation Factor 1 (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Roots (genetics)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Populus (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Facteur-1 d'élongation de la chaîne peptidique (génétique)</term>
<term>Modèles théoriques (MeSH)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Racines de plante (génétique)</term>
<term>Réaction de polymérisation en chaîne (MeSH)</term>
<term>Régulation de l'expression des gènes au cours du développement (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Peptide Elongation Factor 1</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Plant</term>
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteur-1 d'élongation de la chaîne peptidique</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Models, Theoretical</term>
<term>Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Modèles théoriques</term>
<term>Réaction de polymérisation en chaîne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Technological advances have enabled the accurate quantification of gene expression, even within single cell types. While transcriptome analyses are routinely performed, most experimental designs only provide snapshots of gene expression. Molecular mechanisms underlying cell fate or positional signalling have been revealed through these discontinuous datasets. However, in developing multicellular structures, temporal and spatial cues, known to directly influence transcriptional networks, get entangled as the cells are displaced and expand. Access to an unbiased view of the spatiotemporal regulation of gene expression occurring during development requires a specific framework that properly quantifies the rate of change of a property in a moving and expanding element, such as a cell or an organ segment.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We show how the rate of change in gene expression can be quantified by combining kinematics and real-time polymerase chain reaction data in a mechanistic model which considers any organ as a continuum. This framework was applied in order to assess the developmental regulation of the two reference genes Actin11 and Elongation Factor 1-beta in the apex of poplar root. The growth field was determined by time-lapse photography and transcript density was obtained at high spatial resolution. The net accumulation rates of the transcripts of the two genes were found to display highly contrasted developmental profiles. Actin11 showed pulses of up and down regulation in the accelerating and decelerating parts of the growth zone while the dynamic of EF1beta were much slower. This framework provides key information about gene regulation in a developing organ, such as the location, the duration and the intensity of gene induction/repression.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>We demonstrated that gene expression patterns can be monitored using the continuity equation without using mutants or reporter constructions. Given the rise of imaging technologies, this framework in our view opens a new way to dissect the molecular basis of growth regulation, even in non-model species or complex structures.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20202192</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>05</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1741-7007</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<PubDate>
<Year>2010</Year>
<Month>Mar</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>BMC biology</Title>
<ISOAbbreviation>BMC Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Monitoring the regulation of gene expression in a growing organ using a fluid mechanics formalism.</ArticleTitle>
<Pagination>
<MedlinePgn>18</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1741-7007-8-18</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Technological advances have enabled the accurate quantification of gene expression, even within single cell types. While transcriptome analyses are routinely performed, most experimental designs only provide snapshots of gene expression. Molecular mechanisms underlying cell fate or positional signalling have been revealed through these discontinuous datasets. However, in developing multicellular structures, temporal and spatial cues, known to directly influence transcriptional networks, get entangled as the cells are displaced and expand. Access to an unbiased view of the spatiotemporal regulation of gene expression occurring during development requires a specific framework that properly quantifies the rate of change of a property in a moving and expanding element, such as a cell or an organ segment.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We show how the rate of change in gene expression can be quantified by combining kinematics and real-time polymerase chain reaction data in a mechanistic model which considers any organ as a continuum. This framework was applied in order to assess the developmental regulation of the two reference genes Actin11 and Elongation Factor 1-beta in the apex of poplar root. The growth field was determined by time-lapse photography and transcript density was obtained at high spatial resolution. The net accumulation rates of the transcripts of the two genes were found to display highly contrasted developmental profiles. Actin11 showed pulses of up and down regulation in the accelerating and decelerating parts of the growth zone while the dynamic of EF1beta were much slower. This framework provides key information about gene regulation in a developing organ, such as the location, the duration and the intensity of gene induction/repression.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">We demonstrated that gene expression patterns can be monitored using the continuity equation without using mutants or reporter constructions. Given the rise of imaging technologies, this framework in our view opens a new way to dissect the molecular basis of growth regulation, even in non-model species or complex structures.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Merret</LastName>
<ForeName>Rémy</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>INRA, Nancy Université, UMR1137 Ecologie et Ecophysiologie Forestières, IFR 110 EFABA, F-54280 Champenoux, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moulia</LastName>
<ForeName>Bruno</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hummel</LastName>
<ForeName>Irène</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cohen</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dreyer</LastName>
<ForeName>Erwin</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bogeat-Triboulot</LastName>
<ForeName>Marie-Béatrice</ForeName>
<Initials>MB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>03</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Biol</MedlineTA>
<NlmUniqueID>101190720</NlmUniqueID>
<ISSNLinking>1741-7007</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020648">Peptide Elongation Factor 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="N">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020648" MajorTopicYN="N">Peptide Elongation Factor 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>09</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>03</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20202192</ArticleId>
<ArticleId IdType="pii">1741-7007-8-18</ArticleId>
<ArticleId IdType="doi">10.1186/1741-7007-8-18</ArticleId>
<ArticleId IdType="pmc">PMC2845557</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Dev Biol. 2007 Nov 1;311(1):213-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17916346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16438-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17940043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Dec;8(6):619-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16181803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1452-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19168641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Mar;20(3):543-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18319396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 19;296(5567):541-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11964482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Oct;145(2):305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jun;135(2):1050-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15181207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 May;87(1):50-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 23;103(21):7988-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16702552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Sep;18(9):2145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16905654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4728-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14960734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jun;20(6):1494-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18523061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Jun;3(6):583-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1841719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1474-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15778456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Sep;62(1-2):305-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1138-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Nov 2;318(5851):801-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17975066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 1979 Feb 21;76(4):481-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">439916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(3):514-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):4936-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15788537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:279-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Jul 13;406(6792):188-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10910359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(2):461-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19264759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9371-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12883007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Mar;74(3):721-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Jun;21(6):1659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19491238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Aug;129(4):1464-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12177460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:451-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Aug;93(4):1337-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:257-288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):1908-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15937229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Jul;7(7):524-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16755288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Dec 12;302(5652):1956-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1999 Aug;86(8):1059-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Oct 17;322(5900):399-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18927385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2004 Aug 18;4:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15317655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3418-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1047-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15657140</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Champenoux</li>
</settlement>
<orgName>
<li>Nancy-Université</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bogeat Triboulot, Marie Beatrice" sort="Bogeat Triboulot, Marie Beatrice" uniqKey="Bogeat Triboulot M" first="Marie-Béatrice" last="Bogeat-Triboulot">Marie-Béatrice Bogeat-Triboulot</name>
<name sortKey="Cohen, David" sort="Cohen, David" uniqKey="Cohen D" first="David" last="Cohen">David Cohen</name>
<name sortKey="Dreyer, Erwin" sort="Dreyer, Erwin" uniqKey="Dreyer E" first="Erwin" last="Dreyer">Erwin Dreyer</name>
<name sortKey="Hummel, Irene" sort="Hummel, Irene" uniqKey="Hummel I" first="Irène" last="Hummel">Irène Hummel</name>
<name sortKey="Moulia, Bruno" sort="Moulia, Bruno" uniqKey="Moulia B" first="Bruno" last="Moulia">Bruno Moulia</name>
</noCountry>
<country name="France">
<region name="Grand Est">
<name sortKey="Merret, Remy" sort="Merret, Remy" uniqKey="Merret R" first="Rémy" last="Merret">Rémy Merret</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003189 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003189 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20202192
   |texte=   Monitoring the regulation of gene expression in a growing organ using a fluid mechanics formalism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20202192" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020